Enums are a great way to define a set of named constants in C#, but what if you need to iterate over all values dynamically? You can use** Enum.GetValues()** to loop through an enum without hardcoding values.
enum Days { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday } foreach (Days day in Enum.GetValues(typeof(Days))) { Console.WriteLine(day); }
This would output the following:
Sunday Monday Tuesday Wednesday Thursday Friday Saturday
Alternative: Using Enum.GetNames() If you only need the string names, use Enum.GetNames() instead:
foreach (string name in Enum.GetNames(typeof(Days))) { Console.WriteLine(name); }
When working with SQL Server, you may often need to count the number of unique values in a specific column. This is useful for analyzing data, detecting duplicates, and understanding dataset distributions.
To count the number of unique values in a column, SQL Server provides the COUNT(DISTINCT column_name) function. Here’s a simple example:
COUNT(DISTINCT column_name)
SELECT COUNT(DISTINCT column_name) AS distinct_count FROM table_name;
This query will return the number of unique values in column_name.
column_name
If you need to count distinct combinations of multiple columns, you can use a subquery:
SELECT COUNT(*) AS distinct_count FROM (SELECT DISTINCT column1, column2 FROM table_name) AS subquery;
This approach ensures that only unique pairs of column1 and column2 are counted.
column1
column2
By leveraging COUNT(DISTINCT column_name), you can efficiently analyze your database and extract meaningful insights. Happy querying!
String interpolation, introduced in C# 6.0, provides a more readable and concise way to format strings compared to traditional concatenation (+) or string.Format(). Instead of manually inserting variables or placeholders, you can use the $ symbol before a string to directly embed expressions inside brackets.
string name = "Walt"; string job = 'Software Engineer'; string message = $"Hello, my name is {name} and I am a {job}"; Console.WriteLine(message);
This would produce the final output of:
Hello, my name is Walt and I am a Software Engineer
String interpolation can also be chained together into a multiline string (@) for even cleaner more concise results:
string name = "Walt"; string html = $@" <div> <h1>Welcome, {name}!</h1> </div>";
Storing passwords as plain text is dangerous. Instead, you should hash them using a strong, slow hashing algorithm like BCrypt, which includes built-in salting and resistance to brute-force attacks.
Step 1: Install BCrypt NuGet Package
Before using BCrypt, install the BCrypt.Net-Next package:
dotnet add package BCrypt.Net-Next
or via NuGet Package Manager:
Install-Package BCrypt.Net-Next
Step 2: Hash a Password
Use BCrypt.HashPassword() to securely hash a password before storing it:
using BCrypt.Net; string password = "mySecurePassword123"; string hashedPassword = BCrypt.HashPassword(password); Console.WriteLine(hashedPassword); // Output: $2a$12$...
Step 3: Verify a Password
To check a user's login attempt, use BCrypt.Verify():
bool isMatch = BCrypt.Verify("mySecurePassword123", hashedPassword); Console.WriteLine(isMatch); // Output: True
Ensuring proper hashing should be at the top of your list when it comes to building authentication systems.
Register for my free weekly newsletter.