How to Use Lazy Loading in React for Faster Performance

Slow initial load times can drive users away from your React application. One powerful technique to improve performance is lazy loading - loading components only when they're needed.

Let's explore how to implement this in React.

The Problem with Eager Loading

By default, React bundles all your components together, forcing users to download everything upfront. This makes navigation much quicker and more streamlined once this initial download is complete.

However, depending on the size of your application, it could also create a long initial load time.

import HeavyComponent from './HeavyComponent';
import AnotherHeavyComponent from './AnotherHeavyComponent';

function App() {
  return (
    <div>
      {/* These components load even if user never sees them */}
      <HeavyComponent />
      <AnotherHeavyComponent />
    </div>
  );
}

React.lazy() to the Rescue

React.lazy() lets you defer loading components until they're actually needed:

import React, { lazy, Suspense } from 'react';

// Components are now loaded only when rendered
const HeavyComponent = lazy(() => import('./HeavyComponent'));
const AnotherHeavyComponent = lazy(() => import('./AnotherHeavyComponent'));

function App() {
  return (
    <div>
      <Suspense fallback={<div>Loading...</div>}>
        <HeavyComponent />
        <AnotherHeavyComponent />
      </Suspense>
    </div>
  );
}

Route-Based Lazy Loading

Combine with React Router for even better performance:

import React, { lazy, Suspense } from 'react';
import { BrowserRouter, Routes, Route } from 'react-router-dom';

const Home = lazy(() => import('./pages/Home'));
const Dashboard = lazy(() => import('./pages/Dashboard'));
const Settings = lazy(() => import('./pages/Settings'));

function App() {
  return (
    <BrowserRouter>
      <Suspense fallback={<div>Loading...</div>}>
        <Routes>
          <Route path="/" element={<Home />} />
          <Route path="/dashboard" element={<Dashboard />} />
          <Route path="/settings" element={<Settings />} />
        </Routes>
      </Suspense>
    </BrowserRouter>
  );
}

Implement these techniques in your React application today and watch your load times improve dramatically!

0
101

Related

Primary constructors, introduced in C# 12, offer a more concise way to define class parameters and initialize fields.

This feature reduces boilerplate code and makes classes more readable.

Traditional Approach vs Primary Constructor

Before primary constructors, you would likely write something like the following:

public class UserService
{
    private readonly ILogger _logger;
    private readonly IUserRepository _repository;

    public UserService(ILogger logger, IUserRepository repository)
    {
        _logger = logger;
        _repository = repository;
    }

    public async Task<User> GetUserById(int id)
    {
        _logger.LogInformation("Fetching user {Id}", id);
        return await _repository.GetByIdAsync(id);
    }
}

With primary constructors, this becomes:

public class UserService(ILogger logger, IUserRepository repository)
{
    public async Task<User> GetUserById(int id)
    {
        logger.LogInformation("Fetching user {Id}", id);
        return await repository.GetByIdAsync(id);
    }
}

Key Benefits

  1. Reduced Boilerplate: No need to declare private fields and write constructor assignments
  2. Parameters Available Throughout: Constructor parameters are accessible in all instance methods
  3. Immutability by Default: Parameters are effectively readonly without explicit declaration

Real-World Example

Here's a practical example using primary constructors with dependency injection:

public class OrderProcessor(
    IOrderRepository orderRepo,
    IPaymentService paymentService,
    ILogger<OrderProcessor> logger)
{
    public async Task<OrderResult> ProcessOrder(Order order)
    {
        try
        {
            logger.LogInformation("Processing order {OrderId}", order.Id);
            
            var paymentResult = await paymentService.ProcessPayment(order.Payment);
            if (!paymentResult.Success)
            {
                return new OrderResult(false, "Payment failed");
            }

            await orderRepo.SaveOrder(order);
            return new OrderResult(true, "Order processed successfully");
        }
        catch (Exception ex)
        {
            logger.LogError(ex, "Failed to process order {OrderId}", order.Id);
            throw;
        }
    }
}

Tips and Best Practices

  1. Use primary constructors when the class primarily needs dependencies for its methods
  2. Combine with records for immutable data types:
public record Customer(string Name, string Email)
{
    public string FormattedEmail => $"{Name} <{Email}>";
}
  1. Consider traditional constructors for complex initialization logic

Primary constructors provide a cleaner, more maintainable way to write C# classes, especially when working with dependency injection and simple data objects.

0
68

Reading a file line by line is useful when handling large files without loading everything into memory at once.

✅ Best Practice: Use File.ReadLines() which is more memory efficient.

Example

foreach (string line in File.ReadLines("file.txt"))
{
    Console.WriteLine(line);
}

Why use ReadLines()?

Reads one line at a time, reducing overall memory usage. Ideal for large files (e.g., logs, CSVs).

Alternative: Use StreamReader (More Control)

For scenarios where you need custom processing while reading the contents of the file:

using (StreamReader reader = new StreamReader("file.txt"))
{
    string? line;
    while ((line = reader.ReadLine()) != null)
    {
        Console.WriteLine(line);
    }
}

Why use StreamReader?

Lets you handle exceptions, encoding, and buffering. Supports custom processing (e.g., search for a keyword while reading).

When to Use ReadAllLines()? If you need all lines at once, use:

string[] lines = File.ReadAllLines("file.txt");

Caution: Loads the entire file into memory—avoid for large files!

3
285

The null coalescing assignment operator (??=) introduced in C# 8.0 provides a cleaner way to assign a value to a variable only when it's null. Let's see how and when to use it effectively.

Quick Example

// Instead of writing this:
if (myVariable == null)
    myVariable = defaultValue;

// You can write this:
myVariable ??= defaultValue;

Real-World Examples

Simple Property Initialization

public class UserSettings
{
    private List<string> _preferences;
    
    public List<string> Preferences
    {
        get
        {
            _preferences ??= new List<string>();
            return _preferences;
        }
    }
}

Service Caching

public class ServiceCache
{
    private ApiClient _client;
    
    public ApiClient GetClient()
    {
        _client ??= new ApiClient("https://api.example.com");
        return _client;
    }
}

Lazy Configuration Loading

public class ConfigurationManager
{
    private Dictionary<string, string> _settings;
    
    public string GetSetting(string key)
    {
        _settings ??= LoadSettingsFromFile();
        return _settings.TryGetValue(key, out var value) ? value : null;
    }
    
    private Dictionary<string, string> LoadSettingsFromFile()
    {
        // Load settings logic here
        return new Dictionary<string, string>();
    }
}

Common Gotchas

Reference vs Value Types

The operator works differently with value types - they need to be nullable:

// This won't compile
int count ??= 1;

// This works
int? count ??= 1;

Chaining Operations

// You can chain the operator
string result = first ??= second ??= "default";

// Equivalent to:
if (first == null)
{
    if (second == null)
    {
        second = "default";
    }
    first = second;
}
result = first;

Thread Safety

The operator is not thread-safe by default:

// Not thread-safe
public class SharedCache
{
    private static Dictionary<string, object> _cache;
    
    public object GetItem(string key)
    {
        // Multiple threads could evaluate null simultaneously
        _cache ??= new Dictionary<string, object>();
        return _cache.GetValueOrDefault(key);
    }
}

// Thread-safe version
public class SharedCache
{
    private static Dictionary<string, object> _cache;
    private static readonly object _lock = new object();
    
    public object GetItem(string key)
    {
        lock (_lock)
        {
            _cache ??= new Dictionary<string, object>();
            return _cache.GetValueOrDefault(key);
        }
    }
}

Performance Considerations

The null coalescing assignment operator is compiled to efficient IL code. It generally performs the same as an explicit null check:

// These compile to similar IL
obj ??= new object();

if (obj == null)
    obj = new object();

When to Use It

✅ Good use cases:

  • Lazy initialization of properties
  • Caching values
  • Setting default values for nullable types
  • Simplifying null checks in property getters

❌ Avoid using when:

  • You need thread-safe initialization (use Lazy<T> instead)
  • The right-hand expression has side effects
  • You need more complex null-checking logic

Visual Studio Tips

You can use Quick Actions (Ctrl+.) to convert between traditional null checks and the ??= operator. Look for the suggestion "Use null coalescing assignment" when you have a pattern like:

if (variable == null)
    variable = value;

Version Compatibility

This feature requires:

  • C# 8.0 or later
  • .NET Core 3.0+ or .NET Standard 2.1+
  • Visual Studio 2019+
1
57