CSV (Comma-Separated Values) files are a common format for data exchange. Here's how to parse them effectively in C#:
The simplest approach uses File.ReadAllLines() and string splitting:
File.ReadAllLines()
string[] lines = File.ReadAllLines("data.csv"); foreach (string line in lines) { string[] values = line.Split(','); // Process values here }
For more robust parsing, the CsvHelper library offers better handling of escaped characters and complex data:
using CsvHelper; using System.Globalization; using (var reader = new StreamReader("data.csv")) using (var csv = new CsvReader(reader, CultureInfo.InvariantCulture)) { var records = csv.GetRecords<MyClass>(); foreach (var record in records) { // Access strongly-typed data Console.WriteLine(record.PropertyName); } }
This minimal approach will get you started with CSV parsing in C#, whether you need a quick solution or a production-ready implementation.
Storing passwords as plain text is dangerous. Instead, you should hash them using a strong, slow hashing algorithm like BCrypt, which includes built-in salting and resistance to brute-force attacks.
Step 1: Install BCrypt NuGet Package
Before using BCrypt, install the BCrypt.Net-Next package:
dotnet add package BCrypt.Net-Next
or via NuGet Package Manager:
Install-Package BCrypt.Net-Next
Step 2: Hash a Password
Use BCrypt.HashPassword() to securely hash a password before storing it:
using BCrypt.Net; string password = "mySecurePassword123"; string hashedPassword = BCrypt.HashPassword(password); Console.WriteLine(hashedPassword); // Output: $2a$12$...
Step 3: Verify a Password
To check a user's login attempt, use BCrypt.Verify():
bool isMatch = BCrypt.Verify("mySecurePassword123", hashedPassword); Console.WriteLine(isMatch); // Output: True
Ensuring proper hashing should be at the top of your list when it comes to building authentication systems.
Closing a SqlDataReader correctly prevents memory leaks, connection issues, and unclosed resources. Here’s the best way to do it.
Using using statements ensures SqlDataReader and SqlConnection are closed even if an exception occurs.
Example
using (SqlConnection conn = new SqlConnection(connectionString)) { conn.Open(); using (SqlCommand cmd = new SqlCommand("SELECT * FROM Users", conn)) using (SqlDataReader reader = cmd.ExecuteReader()) { while (reader.Read()) { Console.WriteLine(reader["Username"]); } } // ✅ Auto-closes reader here } // ✅ Auto-closes connection here
This approach auto-closes resources when done and it is cleaner and less error-prone than manual closing.
If you need explicit control, you can manually close it inside a finally block.
SqlDataReader? reader = null; try { using SqlConnection conn = new SqlConnection(connectionString); conn.Open(); using SqlCommand cmd = new SqlCommand("SELECT * FROM Users", conn); reader = cmd.ExecuteReader(); while (reader.Read()) { Console.WriteLine(reader["Username"]); } } finally { reader?.Close(); // ✅ Closes reader if it was opened }
This is slightly more error prone if you forget to add a finally block. But might make sense when you need to handle the reader separately from the command or connection.
Slow initial load times can drive users away from your React application. One powerful technique to improve performance is lazy loading - loading components only when they're needed.
Let's explore how to implement this in React.
By default, React bundles all your components together, forcing users to download everything upfront. This makes navigation much quicker and more streamlined once this initial download is complete.
However, depending on the size of your application, it could also create a long initial load time.
import HeavyComponent from './HeavyComponent'; import AnotherHeavyComponent from './AnotherHeavyComponent'; function App() { return ( <div> {/* These components load even if user never sees them */} <HeavyComponent /> <AnotherHeavyComponent /> </div> ); }
React.lazy() lets you defer loading components until they're actually needed:
import React, { lazy, Suspense } from 'react'; // Components are now loaded only when rendered const HeavyComponent = lazy(() => import('./HeavyComponent')); const AnotherHeavyComponent = lazy(() => import('./AnotherHeavyComponent')); function App() { return ( <div> <Suspense fallback={<div>Loading...</div>}> <HeavyComponent /> <AnotherHeavyComponent /> </Suspense> </div> ); }
Combine with React Router for even better performance:
import React, { lazy, Suspense } from 'react'; import { BrowserRouter, Routes, Route } from 'react-router-dom'; const Home = lazy(() => import('./pages/Home')); const Dashboard = lazy(() => import('./pages/Dashboard')); const Settings = lazy(() => import('./pages/Settings')); function App() { return ( <BrowserRouter> <Suspense fallback={<div>Loading...</div>}> <Routes> <Route path="/" element={<Home />} /> <Route path="/dashboard" element={<Dashboard />} /> <Route path="/settings" element={<Settings />} /> </Routes> </Suspense> </BrowserRouter> ); }
Implement these techniques in your React application today and watch your load times improve dramatically!
Register for my free weekly newsletter.