Using SqlDataReader asynchronously prevents blocking the main thread, improving performance in web apps and large queries. Here’s how to do it properly.
Use await with ExecuteReaderAsync()
using (SqlConnection conn = new SqlConnection(connectionString)) { await conn.OpenAsync(); using (SqlCommand cmd = new SqlCommand("SELECT * FROM Users", conn)) using (SqlDataReader reader = await cmd.ExecuteReaderAsync()) { while (await reader.ReadAsync()) { Console.WriteLine(reader["Username"]); } } // ✅ Auto-closes reader } // ✅ Auto-closes connection
Why use async?
A couple of reasons:
⚡ Alternative: ConfigureAwait(false) for ASP.NET
Use ConfigureAwait(false) in library code to avoid deadlocks in UI frameworks like ASP.NET.
using (SqlConnection conn = new SqlConnection(connectionString)) { await conn.OpenAsync().ConfigureAwait(false); using (SqlCommand cmd = new SqlCommand("SELECT * FROM Users", conn)) using (SqlDataReader reader = await cmd.ExecuteReaderAsync().ConfigureAwait(false)) { while (await reader.ReadAsync().ConfigureAwait(false)) { Console.WriteLine(reader["Username"]); } } }
When working with SQL Server, you may often need to count the number of unique values in a specific column. This is useful for analyzing data, detecting duplicates, and understanding dataset distributions.
To count the number of unique values in a column, SQL Server provides the COUNT(DISTINCT column_name) function. Here’s a simple example:
COUNT(DISTINCT column_name)
SELECT COUNT(DISTINCT column_name) AS distinct_count FROM table_name;
This query will return the number of unique values in column_name.
column_name
If you need to count distinct combinations of multiple columns, you can use a subquery:
SELECT COUNT(*) AS distinct_count FROM (SELECT DISTINCT column1, column2 FROM table_name) AS subquery;
This approach ensures that only unique pairs of column1 and column2 are counted.
column1
column2
By leveraging COUNT(DISTINCT column_name), you can efficiently analyze your database and extract meaningful insights. Happy querying!
Storing passwords as plain text is dangerous. Instead, you should hash them using a strong, slow hashing algorithm like BCrypt, which includes built-in salting and resistance to brute-force attacks.
Step 1: Install BCrypt NuGet Package
Before using BCrypt, install the BCrypt.Net-Next package:
dotnet add package BCrypt.Net-Next
or via NuGet Package Manager:
Install-Package BCrypt.Net-Next
Step 2: Hash a Password
Use BCrypt.HashPassword() to securely hash a password before storing it:
using BCrypt.Net; string password = "mySecurePassword123"; string hashedPassword = BCrypt.HashPassword(password); Console.WriteLine(hashedPassword); // Output: $2a$12$...
Step 3: Verify a Password
To check a user's login attempt, use BCrypt.Verify():
bool isMatch = BCrypt.Verify("mySecurePassword123", hashedPassword); Console.WriteLine(isMatch); // Output: True
Ensuring proper hashing should be at the top of your list when it comes to building authentication systems.
When working with URLs in C#, encoding is essential to ensure that special characters (like spaces, ?, &, and =) don’t break the URL structure. The recommended way to encode a string for a URL is by using Uri.EscapeDataString(), which converts unsafe characters into their percent-encoded equivalents.
string rawText = "hello world!"; string encodedText = Uri.EscapeDataString(rawText); Console.WriteLine(encodedText); // Output: hello%20world%21
This method encodes spaces as %20, making it ideal for query parameters.
For ASP.NET applications, you can also use HttpUtility.UrlEncode() (from System.Web), which encodes spaces as +:
using System.Web; string encodedText = HttpUtility.UrlEncode("hello world!"); Console.WriteLine(encodedText); // Output: hello+world%21
For .NET Core and later, Uri.EscapeDataString() is the preferred choice.
Register for my free weekly newsletter.