How to Use File-Scoped Namespaces in C# for Cleaner Code

File-scoped namespaces, introduced in C# 10, provide a more concise way to declare namespaces in your code files.

This feature helps reduce nesting levels and makes your code cleaner and more readable. Let's explore how to use them effectively and understand their benefits.

Traditional Namespace Declaration

Traditionally, C# developers have used block-scoped namespaces, which require curly braces and add an extra level of indentation:

namespace MyCompany.MyProduct.Features
{
    public class UserService
    {
        private readonly string _connectionString;

        public UserService(string connectionString)
        {
            _connectionString = connectionString;
        }

        public void CreateUser(string username)
        {
            // Implementation
        }
    }

    public record User(string Username, string Email);
}

Modern File-Scoped Namespace

With file-scoped namespaces, you can declare the namespace without braces, reducing indentation and making the code more readable:

namespace MyCompany.MyProduct.Features;

public class UserService
{
    private readonly string _connectionString;

    public UserService(string connectionString)
    {
        _connectionString = connectionString;
    }

    public void CreateUser(string username)
    {
        // Implementation
    }
}

public record User(string Username, string Email);

Key Benefits and Best Practices

  1. Reduced Indentation: File-scoped namespaces eliminate one level of indentation, making the code easier to read and maintain.

  2. Single Namespace per File: File-scoped namespaces enforce a good practice of having only one namespace per file, improving code organization.

  3. Compatibility: File-scoped namespaces work seamlessly with existing code and can be gradually adopted in your codebase.

Important Considerations

When using file-scoped namespaces, keep these points in mind:

  • You can only have one namespace declaration per file
  • The namespace declaration must be the first non-comment line in the file
  • You cannot mix traditional and file-scoped namespace declarations in the same file

Migration Tips

When converting existing code to use file-scoped namespaces:

  1. Start with new files, using file-scoped namespaces from the beginning
  2. Gradually convert existing files during regular maintenance work
  3. Use IDE tools to automate the conversion process
  4. Ensure your team agrees on the migration approach and timeline

Conclusion

File-scoped namespaces are a simple yet effective feature that can make your C# code more readable and maintainable. While the benefits might seem small, they add up significantly in larger codebases. Consider adopting this modern syntax in your C# projects, especially if you're using C# 10 or later.

0
134

Related

String interpolation, introduced in C# 6.0, provides a more readable and concise way to format strings compared to traditional concatenation (+) or string.Format(). Instead of manually inserting variables or placeholders, you can use the $ symbol before a string to directly embed expressions inside brackets.

string name = "Walt";
string job = 'Software Engineer';

string message = $"Hello, my name is {name} and I am a {job}";
Console.WriteLine(message);

This would produce the final output of:

Hello, my name is Walt and I am a Software Engineer

String interpolation can also be chained together into a multiline string (@) for even cleaner more concise results:

string name = "Walt";
string html = $@"
    <div>
        <h1>Welcome, {name}!</h1>
    </div>";
36
142

XML (Extensible Markup Language) is a widely used format for storing and transporting data.

In C#, you can create XML files efficiently using the XmlWriter and XDocument classes. This guide covers both methods with practical examples.

Writing XML Using XmlWriter

XmlWriter provides a fast and memory-efficient way to generate XML files by writing elements sequentially.

Example:

using System;
using System.Xml;

class Program
{
    static void Main()
    {
        using (XmlWriter writer = XmlWriter.Create("person.xml"))
        {
            writer.WriteStartDocument();
            writer.WriteStartElement("Person");

            writer.WriteElementString("FirstName", "John");
            writer.WriteElementString("LastName", "Doe");
            writer.WriteElementString("Age", "30");

            writer.WriteEndElement();
            writer.WriteEndDocument();
        }
        Console.WriteLine("XML file created successfully.");
    }
}

Output (person.xml):

<?xml version="1.0" encoding="utf-8"?>
<Person>
    <FirstName>John</FirstName>
    <LastName>Doe</LastName>
    <Age>30</Age>
</Person>

Writing XML Using XDocument

The XDocument class from LINQ to XML provides a more readable and flexible way to create XML files.

Example:

using System;
using System.Xml.Linq;

class Program
{
    static void Main()
    {
        XDocument doc = new XDocument(
            new XElement("Person",
                new XElement("FirstName", "John"),
                new XElement("LastName", "Doe"),
                new XElement("Age", "30")
            )
        );
        doc.Save("person.xml");
        Console.WriteLine("XML file created successfully.");
    }
}

This approach is ideal for working with complex XML structures and integrating LINQ queries.

When to Use Each Method

  • Use XmlWriter when performance is critical and you need to write XML sequentially.
  • Use XDocument when you need a more readable, maintainable, and flexible way to manipulate XML.

Conclusion

Writing XML files in C# is straightforward with XmlWriter and XDocument. Choose the method that best suits your needs for performance, readability, and maintainability.

1
236

Removing duplicates from a list in C# is a common task, especially when working with large datasets. C# provides multiple ways to achieve this efficiently, leveraging built-in collections and LINQ.

Using HashSet (Fastest for Unique Elements)

A HashSet<T> automatically removes duplicates since it only stores unique values. This is one of the fastest methods:

List<int> numbers = new List<int> { 1, 2, 2, 3, 4, 4, 5 };
numbers = new HashSet<int>(numbers).ToList();
Console.WriteLine(string.Join(", ", numbers)); // Output: 1, 2, 3, 4, 5

Using LINQ Distinct (Concise and Readable)

LINQ’s Distinct() method provides an elegant way to remove duplicates:

List<int> numbers = new List<int> { 1, 2, 2, 3, 4, 4, 5 };
numbers = numbers.Distinct().ToList();
Console.WriteLine(string.Join(", ", numbers)); // Output: 1, 2, 3, 4, 5

Removing Duplicates by Custom Property (For Complex Objects)

When working with objects, DistinctBy() from .NET 6+ simplifies duplicate removal based on a property:

using System.Linq;
using System.Collections.Generic;

class Person
{
    public string Name { get; set; }
    public int Age { get; set; }
}

List<Person> people = new List<Person>
{
    new Person { Name = "Alice", Age = 30 },
    new Person { Name = "Bob", Age = 25 },
    new Person { Name = "Alice", Age = 30 }
};

people = people.DistinctBy(p => p.Name).ToList();
Console.WriteLine(string.Join(", ", people.Select(p => p.Name))); // Output: Alice, Bob

For earlier .NET versions, use GroupBy():

people = people.GroupBy(p => p.Name).Select(g => g.First()).ToList();

Performance Considerations

  • HashSet<T> is the fastest but only works for simple types.
  • Distinct() is easy to use but slower than HashSet<T> for large lists.
  • DistinctBy() (or GroupBy()) is useful for complex objects but may have performance trade-offs.

Conclusion

Choosing the best approach depends on the data type and use case. HashSet<T> is ideal for primitive types, Distinct() is simple and readable, and DistinctBy() (or GroupBy()) is effective for objects.

0
268