File-scoped namespaces, introduced in C# 10, provide a more concise way to declare namespaces in your code files.
This feature helps reduce nesting levels and makes your code cleaner and more readable. Let's explore how to use them effectively and understand their benefits.
Traditionally, C# developers have used block-scoped namespaces, which require curly braces and add an extra level of indentation:
namespace MyCompany.MyProduct.Features { public class UserService { private readonly string _connectionString; public UserService(string connectionString) { _connectionString = connectionString; } public void CreateUser(string username) { // Implementation } } public record User(string Username, string Email); }
With file-scoped namespaces, you can declare the namespace without braces, reducing indentation and making the code more readable:
namespace MyCompany.MyProduct.Features; public class UserService { private readonly string _connectionString; public UserService(string connectionString) { _connectionString = connectionString; } public void CreateUser(string username) { // Implementation } } public record User(string Username, string Email);
Reduced Indentation: File-scoped namespaces eliminate one level of indentation, making the code easier to read and maintain.
Single Namespace per File: File-scoped namespaces enforce a good practice of having only one namespace per file, improving code organization.
Compatibility: File-scoped namespaces work seamlessly with existing code and can be gradually adopted in your codebase.
When using file-scoped namespaces, keep these points in mind:
When converting existing code to use file-scoped namespaces:
File-scoped namespaces are a simple yet effective feature that can make your C# code more readable and maintainable. While the benefits might seem small, they add up significantly in larger codebases. Consider adopting this modern syntax in your C# projects, especially if you're using C# 10 or later.
When working with SQL Server, you may often need to count the number of unique values in a specific column. This is useful for analyzing data, detecting duplicates, and understanding dataset distributions.
To count the number of unique values in a column, SQL Server provides the COUNT(DISTINCT column_name) function. Here’s a simple example:
COUNT(DISTINCT column_name)
SELECT COUNT(DISTINCT column_name) AS distinct_count FROM table_name;
This query will return the number of unique values in column_name.
column_name
If you need to count distinct combinations of multiple columns, you can use a subquery:
SELECT COUNT(*) AS distinct_count FROM (SELECT DISTINCT column1, column2 FROM table_name) AS subquery;
This approach ensures that only unique pairs of column1 and column2 are counted.
column1
column2
By leveraging COUNT(DISTINCT column_name), you can efficiently analyze your database and extract meaningful insights. Happy querying!
When working with large files, reading the entire file at once may be inefficient or unnecessary, especially when you only need the first few lines.
In C#, you can easily read just the first N lines of a file, improving performance and resource management.
Reading only the first few lines of a file can be beneficial for:
Here's a simple and efficient method using C#:
using System; using System.IO; class FileReader { /// <summary> /// Reads the first N lines from a file. /// </summary> /// <param name="filePath">The path to the file.</param> /// <param name="numberOfLines">Number of lines to read.</param> /// <returns>Array of strings containing the lines read.</returns> public static string[] ReadFirstNLines(string filePath, int numberOfLines) { List<string> lines = new List<string>(); using (StreamReader reader = new StreamReader(filePath)) { string line; int counter = 0; // Read lines until the counter reaches numberOfLines or EOF while (counter < numberOfLines && (line = reader.ReadLine()) != null) { lines.Add(line); counter++; } } return lines.ToArray(); }
Here's a practical example demonstrating the usage of the method above:
string filePath = "C:\\largefile.txt"; int linesToRead = 10; string[] firstLines = FileReader.ReadFirstNLines(filePath, firstLinesCount); foreach (string line in firstLines) { Console.WriteLine(line); }
For a concise implementation, LINQ can also be used:
using System; using System.IO; using System.Linq; class FileReader { public static IEnumerable<string> ReadFirstNLines(string filePath, int numberOfLines) { // Take first N lines directly using LINQ return File.ReadLines(filePath).Take(numberOfLines); } }
string path = "C:\\largeFile.txt"; int n = 10; var lines = FileReader.ReadFirstNLines(path, n); foreach (string line in lines) { Console.WriteLine(line); }
File.ReadLines
File.ReadAllLines
ReadAllLines()
By limiting your reading operations to only the first few lines you actually need, you significantly enhance your application's efficiency and resource management.
Storing passwords as plain text is dangerous. Instead, you should hash them using a strong, slow hashing algorithm like BCrypt, which includes built-in salting and resistance to brute-force attacks.
Step 1: Install BCrypt NuGet Package
Before using BCrypt, install the BCrypt.Net-Next package:
dotnet add package BCrypt.Net-Next
or via NuGet Package Manager:
Install-Package BCrypt.Net-Next
Step 2: Hash a Password
Use BCrypt.HashPassword() to securely hash a password before storing it:
using BCrypt.Net; string password = "mySecurePassword123"; string hashedPassword = BCrypt.HashPassword(password); Console.WriteLine(hashedPassword); // Output: $2a$12$...
Step 3: Verify a Password
To check a user's login attempt, use BCrypt.Verify():
bool isMatch = BCrypt.Verify("mySecurePassword123", hashedPassword); Console.WriteLine(isMatch); // Output: True
Ensuring proper hashing should be at the top of your list when it comes to building authentication systems.
Register for my free weekly newsletter.