How to Use COUNT() vs DISTINCT COUNT() in SQL

Understanding the difference between COUNT() and COUNT(DISTINCT) in SQL is crucial for accurate data analysis.

COUNT() returns the total number of rows that match your query criteria, including duplicates, while COUNT(DISTINCT) returns the number of unique values in a specified column, effectively eliminating duplicates from the count.

For example, if you have a table of customer orders where a single customer can place multiple orders, COUNT(customer_id) would give you the total number of orders, whereas COUNT(DISTINCT customer_id) would tell you how many unique customers have placed orders.

The choice between these functions depends on your specific reporting needs. Use COUNT() when you need the total number of records, such as counting all sales transactions or total number of website visits.

Use COUNT(DISTINCT) when you need to know unique occurrences, like the number of different products sold or unique visitors to your website. It's also worth noting that COUNT(*) counts all rows including NULL values, while COUNT(column_name) excludes NULL values from that specific column, which can lead to different results depending on your data structure.

Example

-- Example table: customer_orders
-- customer_id | order_date  | product_id
-- 1          | 2024-01-01  | 100
-- 1          | 2024-01-02  | 101
-- 2          | 2024-01-01  | 100
-- 3          | 2024-01-03  | 102

-- Count all orders
SELECT COUNT(*) as total_orders
FROM customer_orders;
-- Result: 4 (counts all rows)

-- Count unique customers who placed orders
SELECT COUNT(DISTINCT customer_id) as unique_customers
FROM customer_orders;
-- Result: 3 (counts unique customer_ids: 1, 2, 3)

-- Count unique products ordered
SELECT COUNT(DISTINCT product_id) as unique_products
FROM customer_orders;
-- Result: 3 (counts unique product_ids: 100, 101, 102)

-- Compare regular COUNT with COUNT DISTINCT
SELECT 
    COUNT(customer_id) as total_orders,
    COUNT(DISTINCT customer_id) as unique_customers
FROM customer_orders;
-- Result: total_orders = 4, unique_customers = 3
0
177

Related

Storing passwords as plain text is dangerous. Instead, you should hash them using a strong, slow hashing algorithm like BCrypt, which includes built-in salting and resistance to brute-force attacks.

Step 1: Install BCrypt NuGet Package

Before using BCrypt, install the BCrypt.Net-Next package:

dotnet add package BCrypt.Net-Next

or via NuGet Package Manager:

Install-Package BCrypt.Net-Next

Step 2: Hash a Password

Use BCrypt.HashPassword() to securely hash a password before storing it:

using BCrypt.Net;

string password = "mySecurePassword123";
string hashedPassword = BCrypt.HashPassword(password);

Console.WriteLine(hashedPassword); // Output: $2a$12$...

Step 3: Verify a Password

To check a user's login attempt, use BCrypt.Verify():

bool isMatch = BCrypt.Verify("mySecurePassword123", hashedPassword);
Console.WriteLine(isMatch); // Output: True

Ensuring proper hashing should be at the top of your list when it comes to building authentication systems.

2
256

Reading a file line by line is useful when handling large files without loading everything into memory at once.

✅ Best Practice: Use File.ReadLines() which is more memory efficient.

Example

foreach (string line in File.ReadLines("file.txt"))
{
    Console.WriteLine(line);
}

Why use ReadLines()?

Reads one line at a time, reducing overall memory usage. Ideal for large files (e.g., logs, CSVs).

Alternative: Use StreamReader (More Control)

For scenarios where you need custom processing while reading the contents of the file:

using (StreamReader reader = new StreamReader("file.txt"))
{
    string? line;
    while ((line = reader.ReadLine()) != null)
    {
        Console.WriteLine(line);
    }
}

Why use StreamReader?

Lets you handle exceptions, encoding, and buffering. Supports custom processing (e.g., search for a keyword while reading).

When to Use ReadAllLines()? If you need all lines at once, use:

string[] lines = File.ReadAllLines("file.txt");

Caution: Loads the entire file into memory—avoid for large files!

3
281

Closing a SqlDataReader correctly prevents memory leaks, connection issues, and unclosed resources. Here’s the best way to do it.

Use 'using' to Auto-Close

Using using statements ensures SqlDataReader and SqlConnection are closed even if an exception occurs.

Example

using (SqlConnection conn = new SqlConnection(connectionString))
{
    conn.Open();
    using (SqlCommand cmd = new SqlCommand("SELECT * FROM Users", conn))
    using (SqlDataReader reader = cmd.ExecuteReader())
    {
        while (reader.Read())
        {
            Console.WriteLine(reader["Username"]);
        }
    } // ✅ Auto-closes reader here
} // ✅ Auto-closes connection here

This approach auto-closes resources when done and it is cleaner and less error-prone than manual closing.

⚡ Alternative: Manually Close in finally Block

If you need explicit control, you can manually close it inside a finally block.

SqlDataReader? reader = null;
try
{
    using SqlConnection conn = new SqlConnection(connectionString);
    conn.Open();
    using SqlCommand cmd = new SqlCommand("SELECT * FROM Users", conn);
    reader = cmd.ExecuteReader();

    while (reader.Read())
    {
        Console.WriteLine(reader["Username"]);
    }
}
finally
{
    reader?.Close();  // ✅ Closes reader if it was opened
}

This is slightly more error prone if you forget to add a finally block. But might make sense when you need to handle the reader separately from the command or connection.

0
153