How to Use Reflection in C# to Dynamically Invoke Methods

Reflection in C# allows you to inspect and interact with types dynamically at runtime. It is useful for scenarios like plugin systems, dependency injection, and working with unknown assemblies.

Getting Started with Reflection

To use reflection, include the System.Reflection namespace:

using System;
using System.Reflection;

Invoking a Method Dynamically

You can use reflection to call methods on an object when you don't know the method name at compile time.

class Sample
{
    public void SayHello() => Console.WriteLine("Hello from Reflection!");
}

var sample = new Sample();
MethodInfo method = typeof(Sample).GetMethod("SayHello");
method?.Invoke(sample, null);
// Output: Hello from Reflection!

Invoking Methods with Parameters

If a method requires parameters, pass them as an object array:

class MathOperations
{
    public int Add(int a, int b) => a + b;
}

var math = new MathOperations();
MethodInfo method = typeof(MathOperations).GetMethod("Add");
object result = method?.Invoke(math, new object[] { 5, 3 });
Console.WriteLine(result); // Output: 8

Working with Static Methods

For static methods, pass null as the target object:

class Utility
{
    public static string GetMessage() => "Static method called!";
}

MethodInfo method = typeof(Utility).GetMethod("GetMessage");
object result = method?.Invoke(null, null);
Console.WriteLine(result); // Output: Static method called!

Performance Considerations

  • Reflection is slower than direct method calls because it bypasses compile-time optimizations.
  • Use Delegate.CreateDelegate to improve performance when invoking frequently:
Func<int, int, int> add = (Func<int, int, int>)Delegate.CreateDelegate(
    typeof(Func<int, int, int>),
    typeof(MathOperations).GetMethod("Add")
);
Console.WriteLine(add(5, 3)); // Output: 8

Conclusion

Reflection in C# is a powerful tool for dynamic method invocation. While it introduces some performance overhead, it is invaluable in scenarios requiring runtime flexibility, such as plugins, serialization, and dynamic dependency loading.

0
207

Related

Closing a SqlDataReader correctly prevents memory leaks, connection issues, and unclosed resources. Here’s the best way to do it.

Use 'using' to Auto-Close

Using using statements ensures SqlDataReader and SqlConnection are closed even if an exception occurs.

Example

using (SqlConnection conn = new SqlConnection(connectionString))
{
    conn.Open();
    using (SqlCommand cmd = new SqlCommand("SELECT * FROM Users", conn))
    using (SqlDataReader reader = cmd.ExecuteReader())
    {
        while (reader.Read())
        {
            Console.WriteLine(reader["Username"]);
        }
    } // ✅ Auto-closes reader here
} // ✅ Auto-closes connection here

This approach auto-closes resources when done and it is cleaner and less error-prone than manual closing.

⚡ Alternative: Manually Close in finally Block

If you need explicit control, you can manually close it inside a finally block.

SqlDataReader? reader = null;
try
{
    using SqlConnection conn = new SqlConnection(connectionString);
    conn.Open();
    using SqlCommand cmd = new SqlCommand("SELECT * FROM Users", conn);
    reader = cmd.ExecuteReader();

    while (reader.Read())
    {
        Console.WriteLine(reader["Username"]);
    }
}
finally
{
    reader?.Close();  // ✅ Closes reader if it was opened
}

This is slightly more error prone if you forget to add a finally block. But might make sense when you need to handle the reader separately from the command or connection.

0
159

Reading a file line by line is useful when handling large files without loading everything into memory at once.

✅ Best Practice: Use File.ReadLines() which is more memory efficient.

Example

foreach (string line in File.ReadLines("file.txt"))
{
    Console.WriteLine(line);
}

Why use ReadLines()?

Reads one line at a time, reducing overall memory usage. Ideal for large files (e.g., logs, CSVs).

Alternative: Use StreamReader (More Control)

For scenarios where you need custom processing while reading the contents of the file:

using (StreamReader reader = new StreamReader("file.txt"))
{
    string? line;
    while ((line = reader.ReadLine()) != null)
    {
        Console.WriteLine(line);
    }
}

Why use StreamReader?

Lets you handle exceptions, encoding, and buffering. Supports custom processing (e.g., search for a keyword while reading).

When to Use ReadAllLines()? If you need all lines at once, use:

string[] lines = File.ReadAllLines("file.txt");

Caution: Loads the entire file into memory—avoid for large files!

3
290

Removing duplicates from a list in C# is a common task, especially when working with large datasets. C# provides multiple ways to achieve this efficiently, leveraging built-in collections and LINQ.

Using HashSet (Fastest for Unique Elements)

A HashSet<T> automatically removes duplicates since it only stores unique values. This is one of the fastest methods:

List<int> numbers = new List<int> { 1, 2, 2, 3, 4, 4, 5 };
numbers = new HashSet<int>(numbers).ToList();
Console.WriteLine(string.Join(", ", numbers)); // Output: 1, 2, 3, 4, 5

Using LINQ Distinct (Concise and Readable)

LINQ’s Distinct() method provides an elegant way to remove duplicates:

List<int> numbers = new List<int> { 1, 2, 2, 3, 4, 4, 5 };
numbers = numbers.Distinct().ToList();
Console.WriteLine(string.Join(", ", numbers)); // Output: 1, 2, 3, 4, 5

Removing Duplicates by Custom Property (For Complex Objects)

When working with objects, DistinctBy() from .NET 6+ simplifies duplicate removal based on a property:

using System.Linq;
using System.Collections.Generic;

class Person
{
    public string Name { get; set; }
    public int Age { get; set; }
}

List<Person> people = new List<Person>
{
    new Person { Name = "Alice", Age = 30 },
    new Person { Name = "Bob", Age = 25 },
    new Person { Name = "Alice", Age = 30 }
};

people = people.DistinctBy(p => p.Name).ToList();
Console.WriteLine(string.Join(", ", people.Select(p => p.Name))); // Output: Alice, Bob

For earlier .NET versions, use GroupBy():

people = people.GroupBy(p => p.Name).Select(g => g.First()).ToList();

Performance Considerations

  • HashSet<T> is the fastest but only works for simple types.
  • Distinct() is easy to use but slower than HashSet<T> for large lists.
  • DistinctBy() (or GroupBy()) is useful for complex objects but may have performance trade-offs.

Conclusion

Choosing the best approach depends on the data type and use case. HashSet<T> is ideal for primitive types, Distinct() is simple and readable, and DistinctBy() (or GroupBy()) is effective for objects.

0
299