How to Zip and Unzip Files in C#: A Complete Guide

File compression is an essential skill for any C# developer. Whether you're creating backups, reducing storage space, or preparing files for transmission, knowing how to zip and unzip files programmatically can streamline your applications.

This guide walks you through the process using C#'s built-in System.IO.Compression namespace.

Prerequisites

Before getting started, ensure you have:

  • Visual Studio or your preferred C# IDE
  • .NET Framework 4.5 or later
  • Basic understanding of C# file operations

Creating Zip Files in C#

The System.IO.Compression namespace provides the ZipFile and ZipArchive classes for handling zip operations. Here's how to create a zip file:

using System.IO.Compression;

// Create a zip file from a directory
ZipFile.CreateFromDirectory(@"C:\SourceFolder", @"C:\output.zip");

// Create a zip file with custom settings
using (var zipArchive = ZipFile.Open(@"C:\custom.zip", ZipArchiveMode.Create))
{
    zipArchive.CreateEntryFromFile(@"C:\file1.txt", "file1.txt");
    zipArchive.CreateEntryFromFile(@"C:\file2.pdf", "file2.pdf");
}

Extracting Zip Files

Unzipping files is just as straightforward:

// Extract all files to a directory
ZipFile.ExtractToDirectory(@"C:\archive.zip", @"C:\ExtractedFolder");

// Extract specific files
using (var archive = ZipFile.OpenRead(@"C:\archive.zip"))
{
    foreach (var entry in archive.Entries)
    {
        if (entry.Name.EndsWith(".txt"))
        {
            entry.ExtractToFile(Path.Combine(@"C:\ExtractedFolder", entry.Name));
        }
    }
}

Best Practices and Tips

  1. Always use 'using' statements when working with ZipArchive objects to ensure proper resource disposal.
  2. Handle exceptions appropriately, as file operations can fail due to permissions or file access issues.
  3. Check available disk space before extracting large zip files.
  4. Consider using compression levels for optimal file size versus speed trade-offs.

Advanced Features

The System.IO.Compression namespace offers additional features:

// Set compression level
using (var archive = ZipFile.Open(@"C:\compressed.zip", ZipArchiveMode.Create))
{
    archive.CreateEntryFromFile(@"C:\largefile.dat", "largefile.dat", CompressionLevel.Optimal);
}

// Update existing zip files
using (var archive = ZipFile.Open(@"C:\existing.zip", ZipArchiveMode.Update))
{
    archive.CreateEntryFromFile(@"C:\newfile.txt", "newfile.txt");
}

Common Issues and Solutions

  • File Access Errors: Ensure files aren't in use by other processes before zipping/unzipping.
  • Path Too Long: Use shorter file paths or enable long path support in Windows.
  • Out of Memory: Process large files in chunks rather than loading entirely into memory.

Conclusion

Mastering zip operations in C# enables you to create more efficient applications that handle file compression seamlessly. The System.IO.Compression namespace provides all the tools needed for basic to advanced zip operations, making it easy to implement file compression in your C# projects.

Remember to always test your zip operations thoroughly and implement proper error handling to ensure robust file compression functionality in your applications.

3
607

Related

Closing a SqlDataReader correctly prevents memory leaks, connection issues, and unclosed resources. Here’s the best way to do it.

Use 'using' to Auto-Close

Using using statements ensures SqlDataReader and SqlConnection are closed even if an exception occurs.

Example

using (SqlConnection conn = new SqlConnection(connectionString))
{
    conn.Open();
    using (SqlCommand cmd = new SqlCommand("SELECT * FROM Users", conn))
    using (SqlDataReader reader = cmd.ExecuteReader())
    {
        while (reader.Read())
        {
            Console.WriteLine(reader["Username"]);
        }
    } // ✅ Auto-closes reader here
} // ✅ Auto-closes connection here

This approach auto-closes resources when done and it is cleaner and less error-prone than manual closing.

⚡ Alternative: Manually Close in finally Block

If you need explicit control, you can manually close it inside a finally block.

SqlDataReader? reader = null;
try
{
    using SqlConnection conn = new SqlConnection(connectionString);
    conn.Open();
    using SqlCommand cmd = new SqlCommand("SELECT * FROM Users", conn);
    reader = cmd.ExecuteReader();

    while (reader.Read())
    {
        Console.WriteLine(reader["Username"]);
    }
}
finally
{
    reader?.Close();  // ✅ Closes reader if it was opened
}

This is slightly more error prone if you forget to add a finally block. But might make sense when you need to handle the reader separately from the command or connection.

0
154

Reading a file line by line is useful when handling large files without loading everything into memory at once.

✅ Best Practice: Use File.ReadLines() which is more memory efficient.

Example

foreach (string line in File.ReadLines("file.txt"))
{
    Console.WriteLine(line);
}

Why use ReadLines()?

Reads one line at a time, reducing overall memory usage. Ideal for large files (e.g., logs, CSVs).

Alternative: Use StreamReader (More Control)

For scenarios where you need custom processing while reading the contents of the file:

using (StreamReader reader = new StreamReader("file.txt"))
{
    string? line;
    while ((line = reader.ReadLine()) != null)
    {
        Console.WriteLine(line);
    }
}

Why use StreamReader?

Lets you handle exceptions, encoding, and buffering. Supports custom processing (e.g., search for a keyword while reading).

When to Use ReadAllLines()? If you need all lines at once, use:

string[] lines = File.ReadAllLines("file.txt");

Caution: Loads the entire file into memory—avoid for large files!

3
285

Primary constructors, introduced in C# 12, offer a more concise way to define class parameters and initialize fields.

This feature reduces boilerplate code and makes classes more readable.

Traditional Approach vs Primary Constructor

Before primary constructors, you would likely write something like the following:

public class UserService
{
    private readonly ILogger _logger;
    private readonly IUserRepository _repository;

    public UserService(ILogger logger, IUserRepository repository)
    {
        _logger = logger;
        _repository = repository;
    }

    public async Task<User> GetUserById(int id)
    {
        _logger.LogInformation("Fetching user {Id}", id);
        return await _repository.GetByIdAsync(id);
    }
}

With primary constructors, this becomes:

public class UserService(ILogger logger, IUserRepository repository)
{
    public async Task<User> GetUserById(int id)
    {
        logger.LogInformation("Fetching user {Id}", id);
        return await repository.GetByIdAsync(id);
    }
}

Key Benefits

  1. Reduced Boilerplate: No need to declare private fields and write constructor assignments
  2. Parameters Available Throughout: Constructor parameters are accessible in all instance methods
  3. Immutability by Default: Parameters are effectively readonly without explicit declaration

Real-World Example

Here's a practical example using primary constructors with dependency injection:

public class OrderProcessor(
    IOrderRepository orderRepo,
    IPaymentService paymentService,
    ILogger<OrderProcessor> logger)
{
    public async Task<OrderResult> ProcessOrder(Order order)
    {
        try
        {
            logger.LogInformation("Processing order {OrderId}", order.Id);
            
            var paymentResult = await paymentService.ProcessPayment(order.Payment);
            if (!paymentResult.Success)
            {
                return new OrderResult(false, "Payment failed");
            }

            await orderRepo.SaveOrder(order);
            return new OrderResult(true, "Order processed successfully");
        }
        catch (Exception ex)
        {
            logger.LogError(ex, "Failed to process order {OrderId}", order.Id);
            throw;
        }
    }
}

Tips and Best Practices

  1. Use primary constructors when the class primarily needs dependencies for its methods
  2. Combine with records for immutable data types:
public record Customer(string Name, string Email)
{
    public string FormattedEmail => $"{Name} <{Email}>";
}
  1. Consider traditional constructors for complex initialization logic

Primary constructors provide a cleaner, more maintainable way to write C# classes, especially when working with dependency injection and simple data objects.

0
68