Menu

How to MD5 Hash in C#

Creating an MD5 hash in C# is straightforward using the built-in cryptography libraries.

Best Practice: Use System.Security.Cryptography.MD5 for string or file hashing.

Example

using System;
using System.Security.Cryptography;
using System.Text;

string ComputeMD5Hash(string input)
{
    using (MD5 md5 = MD5.Create())
    {
        byte[] inputBytes = Encoding.UTF8.GetBytes(input);
        byte[] hashBytes = md5.ComputeHash(inputBytes);
        
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < hashBytes.Length; i++)
        {
            sb.Append(hashBytes[i].ToString("x2"));
        }
        
        return sb.ToString();
    }
}

Why use MD5.Create()? Creates a cryptographic service provider that calculates MD5 hashes efficiently.

Alternative: Hash a File (More Common Use Case)

For scenarios where you need to hash the contents of a file:

using System;
using System.IO;
using System.Security.Cryptography;

string ComputeFileMD5(string filePath)
{
    using (var md5 = MD5.Create())
    using (var stream = File.OpenRead(filePath))
    {
        byte[] hashBytes = md5.ComputeHash(stream);
        
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < hashBytes.Length; i++)
        {
            sb.Append(hashBytes[i].ToString("x2"));
        }
        
        return sb.ToString();
    }
}

Why hash files this way? Streams the file content directly through the hash algorithm without loading the entire file into memory.

Security Note

⚠️ Caution: MD5 is considered cryptographically broken and unsuitable for security purposes. For security-sensitive applications, use SHA-256 or better:

using (SHA256 sha256 = SHA256.Create())
{
    // Use the same pattern as MD5 examples
    // Just replace MD5.Create() with SHA256.Create()
}

MD5 is still useful for non-security purposes like checksums and data verification.

0
86

Related

String interpolation, introduced in C# 6.0, provides a more readable and concise way to format strings compared to traditional concatenation (+) or string.Format(). Instead of manually inserting variables or placeholders, you can use the $ symbol before a string to directly embed expressions inside brackets.

string name = "Walt";
string job = 'Software Engineer';

string message = $"Hello, my name is {name} and I am a {job}";
Console.WriteLine(message);

This would produce the final output of:

Hello, my name is Walt and I am a Software Engineer

String interpolation can also be chained together into a multiline string (@) for even cleaner more concise results:

string name = "Walt";
string html = $@"
    <div>
        <h1>Welcome, {name}!</h1>
    </div>";
11
90

Reading a file line by line is useful when handling large files without loading everything into memory at once.

✅ Best Practice: Use File.ReadLines() which is more memory efficient.

Example

foreach (string line in File.ReadLines("file.txt"))
{
    Console.WriteLine(line);
}

Why use ReadLines()?

Reads one line at a time, reducing overall memory usage. Ideal for large files (e.g., logs, CSVs).

Alternative: Use StreamReader (More Control)

For scenarios where you need custom processing while reading the contents of the file:

using (StreamReader reader = new StreamReader("file.txt"))
{
    string? line;
    while ((line = reader.ReadLine()) != null)
    {
        Console.WriteLine(line);
    }
}

Why use StreamReader?

Lets you handle exceptions, encoding, and buffering. Supports custom processing (e.g., search for a keyword while reading).

When to Use ReadAllLines()? If you need all lines at once, use:

string[] lines = File.ReadAllLines("file.txt");

Caution: Loads the entire file into memory—avoid for large files!

2
179

Slow initial load times can drive users away from your React application. One powerful technique to improve performance is lazy loading - loading components only when they're needed.

Let's explore how to implement this in React.

The Problem with Eager Loading

By default, React bundles all your components together, forcing users to download everything upfront. This makes navigation much quicker and more streamlined once this initial download is complete.

However, depending on the size of your application, it could also create a long initial load time.

import HeavyComponent from './HeavyComponent';
import AnotherHeavyComponent from './AnotherHeavyComponent';

function App() {
  return (
    <div>
      {/* These components load even if user never sees them */}
      <HeavyComponent />
      <AnotherHeavyComponent />
    </div>
  );
}

React.lazy() to the Rescue

React.lazy() lets you defer loading components until they're actually needed:

import React, { lazy, Suspense } from 'react';

// Components are now loaded only when rendered
const HeavyComponent = lazy(() => import('./HeavyComponent'));
const AnotherHeavyComponent = lazy(() => import('./AnotherHeavyComponent'));

function App() {
  return (
    <div>
      <Suspense fallback={<div>Loading...</div>}>
        <HeavyComponent />
        <AnotherHeavyComponent />
      </Suspense>
    </div>
  );
}

Route-Based Lazy Loading

Combine with React Router for even better performance:

import React, { lazy, Suspense } from 'react';
import { BrowserRouter, Routes, Route } from 'react-router-dom';

const Home = lazy(() => import('./pages/Home'));
const Dashboard = lazy(() => import('./pages/Dashboard'));
const Settings = lazy(() => import('./pages/Settings'));

function App() {
  return (
    <BrowserRouter>
      <Suspense fallback={<div>Loading...</div>}>
        <Routes>
          <Route path="/" element={<Home />} />
          <Route path="/dashboard" element={<Dashboard />} />
          <Route path="/settings" element={<Settings />} />
        </Routes>
      </Suspense>
    </BrowserRouter>
  );
}

Implement these techniques in your React application today and watch your load times improve dramatically!

0
72