The CASE statement in SQL allows you to implement conditional logic within queries, making it a powerful tool for handling complex data transformations and classifications.
CASE
The CASE statement works like an IF-ELSE structure, evaluating conditions and returning corresponding values:
IF-ELSE
SELECT column_name, CASE WHEN condition1 THEN result1 WHEN condition2 THEN result2 ELSE default_result END AS alias_name FROM table_name;
Assume we have an Employees table with an Age column, and we want to categorize employees based on their age groups:
Employees
Age
SELECT Name, Age, CASE WHEN Age < 25 THEN 'Young' WHEN Age BETWEEN 25 AND 40 THEN 'Mid-Age' ELSE 'Senior' END AS AgeCategory FROM Employees;
CASE is often used in aggregate functions to perform conditional counting or summing:
SELECT SUM(CASE WHEN Age < 25 THEN 1 ELSE 0 END) AS YoungCount, SUM(CASE WHEN Age BETWEEN 25 AND 40 THEN 1 ELSE 0 END) AS MidAgeCount, SUM(CASE WHEN Age > 40 THEN 1 ELSE 0 END) AS SeniorCount FROM Employees;
You can use CASE to customize sorting order dynamically:
SELECT Name, Age FROM Employees ORDER BY CASE WHEN Age < 25 THEN 1 WHEN Age BETWEEN 25 AND 40 THEN 2 ELSE 3 END;
The CASE statement is a versatile tool in SQL for implementing conditional logic in SELECT, WHERE, ORDER BY, and aggregate functions. It enhances query flexibility, making data classification and transformation more efficient.
SELECT
WHERE
ORDER BY
XML (Extensible Markup Language) is a widely used format for storing and transporting data.
In C#, you can create XML files efficiently using the XmlWriter and XDocument classes. This guide covers both methods with practical examples.
XmlWriter
XDocument
XmlWriter provides a fast and memory-efficient way to generate XML files by writing elements sequentially.
using System; using System.Xml; class Program { static void Main() { using (XmlWriter writer = XmlWriter.Create("person.xml")) { writer.WriteStartDocument(); writer.WriteStartElement("Person"); writer.WriteElementString("FirstName", "John"); writer.WriteElementString("LastName", "Doe"); writer.WriteElementString("Age", "30"); writer.WriteEndElement(); writer.WriteEndDocument(); } Console.WriteLine("XML file created successfully."); } }
Output (person.xml):
person.xml
<?xml version="1.0" encoding="utf-8"?> <Person> <FirstName>John</FirstName> <LastName>Doe</LastName> <Age>30</Age> </Person>
The XDocument class from LINQ to XML provides a more readable and flexible way to create XML files.
using System; using System.Xml.Linq; class Program { static void Main() { XDocument doc = new XDocument( new XElement("Person", new XElement("FirstName", "John"), new XElement("LastName", "Doe"), new XElement("Age", "30") ) ); doc.Save("person.xml"); Console.WriteLine("XML file created successfully."); } }
This approach is ideal for working with complex XML structures and integrating LINQ queries.
Writing XML files in C# is straightforward with XmlWriter and XDocument. Choose the method that best suits your needs for performance, readability, and maintainability.
Raw string literals in C# provide a flexible way to work with multiline strings, with some interesting rules around how quotes work.
The key insight is that you can use any number of double quotes (three or more) to delimit your string, as long as the opening and closing sequences have the same number of quotes.
"""
// Three quotes - most common usage string basic = """ This is a basic multiline string """; // Four quotes - when your content has three quotes string withThreeQuotes = """" Here's some text with """quoted""" content """"; // Five quotes - when your content has four quotes string withFourQuotes = """"" Here's text with """"nested"""" quotes """""; // Six quotes - for even more complex scenarios string withFiveQuotes = """""" Look at these """""nested""""" quotes! """""";
The general rule is that if your string content contains N consecutive double quotes, you need to wrap the entire string with at least N+1 quotes. This ensures the compiler can properly distinguish between your content and the string's delimiters.
// Example demonstrating the N+1 rule string example1 = """ No quotes inside """; // 3 quotes is fine string example2 = """" Contains """three quotes""" """"; // Needs 4 quotes (3+1) string example3 = """"" Has """"four quotes"""" """""; // Needs 5 quotes (4+1)
// Indentation example string properlyIndented = """ { "property": "value", "nested": { "deeper": "content" } } """; // This line's position determines the indentation
This flexibility with quote counts makes raw string literals extremely versatile, especially when dealing with content that itself contains quotes, like JSON, XML, or other structured text formats.
Storing passwords as plain text is dangerous. Instead, you should hash them using a strong, slow hashing algorithm like BCrypt, which includes built-in salting and resistance to brute-force attacks.
Step 1: Install BCrypt NuGet Package
Before using BCrypt, install the BCrypt.Net-Next package:
dotnet add package BCrypt.Net-Next
or via NuGet Package Manager:
Install-Package BCrypt.Net-Next
Step 2: Hash a Password
Use BCrypt.HashPassword() to securely hash a password before storing it:
using BCrypt.Net; string password = "mySecurePassword123"; string hashedPassword = BCrypt.HashPassword(password); Console.WriteLine(hashedPassword); // Output: $2a$12$...
Step 3: Verify a Password
To check a user's login attempt, use BCrypt.Verify():
bool isMatch = BCrypt.Verify("mySecurePassword123", hashedPassword); Console.WriteLine(isMatch); // Output: True
Ensuring proper hashing should be at the top of your list when it comes to building authentication systems.
Register for my free weekly newsletter.