Menu

How to Use the nameof Operator for Safer Refactoring in C#

Refactoring code can be risky, especially when dealing with hardcoded string literals representing variable, property, or method names.

One small change in a name could lead to runtime errors that are difficult to track down. Fortunately, C# provides the nameof operator to make refactoring safer and more maintainable.

What is the nameof Operator?

The nameof operator in C# returns the string representation of a variable, method, or class name at compile time. This makes your code more resilient to name changes since the compiler will catch errors if a referenced identifier is renamed or removed.

Basic Usage

Instead of using hardcoded strings, use nameof to reference identifiers dynamically:

class Person
{
    public string FirstName { get; set; }
}

void PrintPropertyName()
{
    Console.WriteLine(nameof(Person.FirstName)); // Output: "FirstName"
}

If FirstName is renamed, the compiler will flag the change, helping prevent runtime errors.

Benefits of Using nameof

  1. Safer Refactoring: When renaming identifiers, the compiler ensures nameof references update automatically.
  2. Improved Readability: Code intent is clearer, avoiding magic strings.
  3. Fewer Runtime Errors: No risk of typos or mismatches in string literals.

Practical Examples

Logging

Using nameof ensures that logs remain accurate even after refactoring:

void LogError(string message, string propertyName)
{
    Console.WriteLine($"Error in {propertyName}: {message}");
}

LogError("Invalid value", nameof(Person.FirstName));

Argument Validation

Validating method parameters without hardcoded strings:

void SetAge(int age)
{
    if (age < 0)
        throw new ArgumentException("Age cannot be negative", nameof(age));
}

Dependency Injection

When working with DI frameworks, nameof prevents issues with binding:

services.AddSingleton<ILogger, Logger>(provider =>
    new Logger(nameof(Logger)));

Conclusion

The nameof operator is a simple yet powerful feature in C# that improves code maintainability and prevents common errors during refactoring. By replacing hardcoded strings with nameof, you can make your applications more robust and future-proof.

0
8

Related

Slow initial load times can drive users away from your React application. One powerful technique to improve performance is lazy loading - loading components only when they're needed.

Let's explore how to implement this in React.

The Problem with Eager Loading

By default, React bundles all your components together, forcing users to download everything upfront. This makes navigation much quicker and more streamlined once this initial download is complete.

However, depending on the size of your application, it could also create a long initial load time.

import HeavyComponent from './HeavyComponent';
import AnotherHeavyComponent from './AnotherHeavyComponent';

function App() {
  return (
    <div>
      {/* These components load even if user never sees them */}
      <HeavyComponent />
      <AnotherHeavyComponent />
    </div>
  );
}

React.lazy() to the Rescue

React.lazy() lets you defer loading components until they're actually needed:

import React, { lazy, Suspense } from 'react';

// Components are now loaded only when rendered
const HeavyComponent = lazy(() => import('./HeavyComponent'));
const AnotherHeavyComponent = lazy(() => import('./AnotherHeavyComponent'));

function App() {
  return (
    <div>
      <Suspense fallback={<div>Loading...</div>}>
        <HeavyComponent />
        <AnotherHeavyComponent />
      </Suspense>
    </div>
  );
}

Route-Based Lazy Loading

Combine with React Router for even better performance:

import React, { lazy, Suspense } from 'react';
import { BrowserRouter, Routes, Route } from 'react-router-dom';

const Home = lazy(() => import('./pages/Home'));
const Dashboard = lazy(() => import('./pages/Dashboard'));
const Settings = lazy(() => import('./pages/Settings'));

function App() {
  return (
    <BrowserRouter>
      <Suspense fallback={<div>Loading...</div>}>
        <Routes>
          <Route path="/" element={<Home />} />
          <Route path="/dashboard" element={<Dashboard />} />
          <Route path="/settings" element={<Settings />} />
        </Routes>
      </Suspense>
    </BrowserRouter>
  );
}

Implement these techniques in your React application today and watch your load times improve dramatically!

0
72

Reading a file line by line is useful when handling large files without loading everything into memory at once.

✅ Best Practice: Use File.ReadLines() which is more memory efficient.

Example

foreach (string line in File.ReadLines("file.txt"))
{
    Console.WriteLine(line);
}

Why use ReadLines()?

Reads one line at a time, reducing overall memory usage. Ideal for large files (e.g., logs, CSVs).

Alternative: Use StreamReader (More Control)

For scenarios where you need custom processing while reading the contents of the file:

using (StreamReader reader = new StreamReader("file.txt"))
{
    string? line;
    while ((line = reader.ReadLine()) != null)
    {
        Console.WriteLine(line);
    }
}

Why use StreamReader?

Lets you handle exceptions, encoding, and buffering. Supports custom processing (e.g., search for a keyword while reading).

When to Use ReadAllLines()? If you need all lines at once, use:

string[] lines = File.ReadAllLines("file.txt");

Caution: Loads the entire file into memory—avoid for large files!

2
179

Closing a SqlDataReader correctly prevents memory leaks, connection issues, and unclosed resources. Here’s the best way to do it.

Use 'using' to Auto-Close

Using using statements ensures SqlDataReader and SqlConnection are closed even if an exception occurs.

Example

using (SqlConnection conn = new SqlConnection(connectionString))
{
    conn.Open();
    using (SqlCommand cmd = new SqlCommand("SELECT * FROM Users", conn))
    using (SqlDataReader reader = cmd.ExecuteReader())
    {
        while (reader.Read())
        {
            Console.WriteLine(reader["Username"]);
        }
    } // ✅ Auto-closes reader here
} // ✅ Auto-closes connection here

This approach auto-closes resources when done and it is cleaner and less error-prone than manual closing.

⚡ Alternative: Manually Close in finally Block

If you need explicit control, you can manually close it inside a finally block.

SqlDataReader? reader = null;
try
{
    using SqlConnection conn = new SqlConnection(connectionString);
    conn.Open();
    using SqlCommand cmd = new SqlCommand("SELECT * FROM Users", conn);
    reader = cmd.ExecuteReader();

    while (reader.Read())
    {
        Console.WriteLine(reader["Username"]);
    }
}
finally
{
    reader?.Close();  // ✅ Closes reader if it was opened
}

This is slightly more error prone if you forget to add a finally block. But might make sense when you need to handle the reader separately from the command or connection.

0
71