Using C# Record Types for Immutable Data Models

Introduced in C# 9.0, record types offer a concise way to create immutable data models with value-based equality. They simplify many common programming tasks when working with data-centric classes.

What Are Record Types?

Records are reference types (like classes) but with built-in functionality for representing immutable data:

// Traditional class approach
public class PersonClass
{
    public string FirstName { get; init; }
    public string LastName { get; init; }
    
    // Requires manual implementation of equality, hash code, etc.
}

// Equivalent record
public record Person(string FirstName, string LastName);

This simple declaration creates an immutable type with:

  • Constructor that accepts all properties
  • Public, init-only properties
  • Value-based equality (compares property values, not references)
  • ToString() implementation that displays all properties
  • Deconstruction support

Benefits of Using Records

1. Immutability by Default

Records are designed for immutability, making them perfect for:

  • Domain models
  • DTOs (Data Transfer Objects)
  • API responses
  • Configuration objects
var person = new Person("John", "Doe");
// person.FirstName = "Jane"; // Compile error - properties are init-only

2. Non-Destructive Mutation with 'with' Expressions

Need to change a property? Use the 'with' expression:

var person = new Person("John", "Doe");
var updatedPerson = person with { FirstName = "Jane" };

// person still refers to "John Doe"
// updatedPerson refers to "Jane Doe"

3. Value-Based Equality

Records automatically implement value equality:

var person1 = new Person("John", "Doe");
var person2 = new Person("John", "Doe");

Console.WriteLine(person1 == person2); // True
Console.WriteLine(person1.Equals(person2)); // True

4. Easy Class Hierarchies

Records can inherit from other records:

public record Person(string FirstName, string LastName);
public record Employee(string FirstName, string LastName, string Department) 
    : Person(FirstName, LastName);

When to Use Records

Use records when:

  • You need immutable objects
  • Equality should compare values, not references
  • You're creating simple data containers
  • You need non-destructive updates with the 'with' expression

Use traditional classes when:

  • You need mutable properties
  • You need reference-based equality
  • You need more control over property implementation

Performance Considerations

While records are convenient, be aware that:

  • The 'with' expression creates a new object (memory allocation)
  • Comparing large records can be slower than reference equality

Example: API Data Model

// API response model
public record WeatherForecast(
    DateTime Date,
    int TemperatureC,
    string Summary)
{
    public int TemperatureF => 32 + (int)(TemperatureC / 0.5556);
}

// Usage
var forecasts = await httpClient.GetFromJsonAsync<List<WeatherForecast>>("weatherforecast");

Records are a powerful addition to C#, making it easier to create robust data models with less boilerplate code.

0
51

Related

When working with SQL Server, you may often need to count the number of unique values in a specific column. This is useful for analyzing data, detecting duplicates, and understanding dataset distributions.

Using COUNT(DISTINCT column_name)

To count the number of unique values in a column, SQL Server provides the COUNT(DISTINCT column_name) function. Here’s a simple example:

SELECT COUNT(DISTINCT column_name) AS distinct_count
FROM table_name;

This query will return the number of unique values in column_name.

Counting Distinct Values Across Multiple Columns

If you need to count distinct combinations of multiple columns, you can use a subquery:

SELECT COUNT(*) AS distinct_count
FROM (SELECT DISTINCT column1, column2 FROM table_name) AS subquery;

This approach ensures that only unique pairs of column1 and column2 are counted.

Why Use COUNT DISTINCT?

  • Helps in identifying unique entries in a dataset.
  • Useful for reporting and analytics.
  • Efficient way to check for duplicates.

By leveraging COUNT(DISTINCT column_name), you can efficiently analyze your database and extract meaningful insights. Happy querying!

0
109

Closing a SqlDataReader correctly prevents memory leaks, connection issues, and unclosed resources. Here’s the best way to do it.

Use 'using' to Auto-Close

Using using statements ensures SqlDataReader and SqlConnection are closed even if an exception occurs.

Example

using (SqlConnection conn = new SqlConnection(connectionString))
{
    conn.Open();
    using (SqlCommand cmd = new SqlCommand("SELECT * FROM Users", conn))
    using (SqlDataReader reader = cmd.ExecuteReader())
    {
        while (reader.Read())
        {
            Console.WriteLine(reader["Username"]);
        }
    } // ✅ Auto-closes reader here
} // ✅ Auto-closes connection here

This approach auto-closes resources when done and it is cleaner and less error-prone than manual closing.

⚡ Alternative: Manually Close in finally Block

If you need explicit control, you can manually close it inside a finally block.

SqlDataReader? reader = null;
try
{
    using SqlConnection conn = new SqlConnection(connectionString);
    conn.Open();
    using SqlCommand cmd = new SqlCommand("SELECT * FROM Users", conn);
    reader = cmd.ExecuteReader();

    while (reader.Read())
    {
        Console.WriteLine(reader["Username"]);
    }
}
finally
{
    reader?.Close();  // ✅ Closes reader if it was opened
}

This is slightly more error prone if you forget to add a finally block. But might make sense when you need to handle the reader separately from the command or connection.

0
128

Raw string literals in C# provide a flexible way to work with multiline strings, with some interesting rules around how quotes work.

The key insight is that you can use any number of double quotes (three or more) to delimit your string, as long as the opening and closing sequences have the same number of quotes.

The Basic Rules

  1. You must use at least three double quotes (""") to start and end a raw string literal
  2. The opening and closing quotes must have the same count
  3. The closing quotes must be on their own line for proper indentation
  4. If your string content contains a sequence of double quotes, you need to use more quotes in your delimiter than the longest sequence in your content

Examples with Different Quote Counts

// Three quotes - most common usage
string basic = """
    This is a basic
    multiline string
    """;

// Four quotes - when your content has three quotes
string withThreeQuotes = """"
    Here's some text with """quoted""" content
    """";

// Five quotes - when your content has four quotes
string withFourQuotes = """""
    Here's text with """"nested"""" quotes
    """"";

// Six quotes - for even more complex scenarios
string withFiveQuotes = """"""
    Look at these """""nested""""" quotes!
    """""";

The N+1 Rule

The general rule is that if your string content contains N consecutive double quotes, you need to wrap the entire string with at least N+1 quotes. This ensures the compiler can properly distinguish between your content and the string's delimiters.

// Example demonstrating the N+1 rule
string example1 = """
    No quotes inside
    """; // 3 quotes is fine

string example2 = """"
    Contains """three quotes"""
    """"; // Needs 4 quotes (3+1)

string example3 = """""
    Has """"four quotes""""
    """""; // Needs 5 quotes (4+1)

Practical Tips

  • Start with three quotes (""") as your default
  • Only increase the quote count when you actually need to embed quote sequences in your content
  • The closing quotes must be on their own line and should line up with the indentation you want
  • Any whitespace to the left of the closing quotes defines the baseline indentation
// Indentation example
string properlyIndented = """
    {
        "property": "value",
        "nested": {
            "deeper": "content"
        }
    }
    """; // This line's position determines the indentation

This flexibility with quote counts makes raw string literals extremely versatile, especially when dealing with content that itself contains quotes, like JSON, XML, or other structured text formats.

1
74